基于sklearn 实现决策树(含最简代码,复杂源码:预测带不带眼镜)
最简代码:
#简单的决策树分类 from sklearn import tree features = [[300,2],[450,2],[200,8],[150,9]] labels = [‘apple‘,‘apple‘,‘orange‘,‘orange‘] clf = tree.DecisionTreeClassifier() clf = clf.fit(features,labels) print(clf.predict([[400,6]]))
预测代码:
代码:
# -*- coding: UTF-8 -*-
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.externals.six import StringIO
from sklearn import tree
import pandas as pd
import numpy as np
import pydotplus
if __name__ == ‘__main__‘:
with open(‘data\lenses.txt‘, ‘r‘) as fr: #加载文件
lenses = [inst.strip().split(‘\t‘) for inst in fr.readlines()] #处理文件
lenses_target = [] #提取每组数据的类别,保存在列表里
for each in lenses:
lenses_target.append(each[-1])
lensesLabels = [‘age‘, ‘prescript‘, ‘astigmatic‘, ‘tearRate‘] #特征标签
lenses_list = [] #保存lenses数据的临时列表
lenses_dict = {} #保存lenses数据的字典,用于生成pandas
for each_label in lensesLabels: #提取信息,生成字典
for each in lenses:
lenses_list.append(each[lensesLabels.index(each_label)])
lenses_dict[each_label] = lenses_list
lenses_list = []
# print(lenses_dict) #打印字典信息
lenses_pd = pd.DataFrame(lenses_dict) #生成pandas.DataFrame
print(lenses_pd) #打印pandas.DataFrame
le = LabelEncoder() #创建LabelEncoder()对象,用于序列化
for col in lenses_pd.columns: #序列化
lenses_pd[col] = le.fit_transform(lenses_pd[col])
print(lenses_pd) #打印编码信息
clf = tree.DecisionTreeClassifier(max_depth = 4) #创建DecisionTreeClassifier()类
clf = clf.fit(lenses_pd.values.tolist(), lenses_target) #使用数据,构建决策树
print(lenses_target)
print(clf.predict([[1,1,1,0]])) #预测预测眼镜
相关推荐
瓜牛呱呱 2020-11-12
柳木木的IT 2020-11-04
yifouhu 2020-11-02
lei0 2020-11-02
源码zanqunet 2020-10-26
码代码的陈同学 2020-10-14
lukezhong 2020-10-14
clh0 2020-09-18
changcongying 2020-09-17
星辰大海的路上 2020-09-13
abfdada 2020-08-26
mzy000 2020-08-24
shenlanse 2020-08-18
zhujiangtaotaise 2020-08-18
xiemanR 2020-08-17