利用卷积神经网络处理cifar图像分类
这是一个图像分类的比赛CIFAR( CIFAR-10 - Object Recognition in Images )
首先我们需要下载数据文件,地址:
http://www.cs.toronto.edu/~kriz/cifar.html
CIFAR-10数据集包含10个类别的60000个32x32彩色图像,每个类别6000个图像。有50000张训练图像和10000张测试图像。
数据集分为五个训练批次和一个测试批次,每个批次具有10000张图像。测试批次包含每个类别中恰好1000张随机选择的图像。训练批次按随机顺序包含其余图像,但是某些训练批次可能包含比另一类更多的图像。在它们之间,培训批次精确地包含每个班级的5000张图像。
这些类是完全互斥的。汽车和卡车之间没有重叠。“汽车”包括轿车,SUV和类似的东西。“卡车”仅包括大型卡车。都不包括皮卡车。

详细代码:
1.导包
import numpy as np # 序列化和反序列化 import pickle from sklearn.preprocessing import OneHotEncoder import warnings warnings.filterwarnings(‘ignore‘) import tensorflow as tf
2.数据加载
def unpickle(file):
3 with open(file, ‘rb‘) as fo:
dict = pickle.load(fo, encoding=‘ISO-8859-1‘)
return dict
# def unpickle(file):
# import pickle
# with open(file, ‘rb‘) as fo:
# dict = pickle.load(fo, encoding=‘bytes‘)
# return dict
labels = []
X_train = []
for i in range(1,6):
data = unpickle(‘./cifar-10-batches-py/data_batch_%d‘%(i))
labels.append(data[‘labels‘])
X_train.append(data[‘data‘])
# 将list类型转换为ndarray
y_train = np.array(labels).reshape(-1)
X_train = np.array(X_train)
# reshape
X_train = X_train.reshape(-1,3072)
# 目标值概率
one_hot = OneHotEncoder()
y_train =one_hot.fit_transform(y_train.reshape(-1,1)).toarray()
display(X_train.shape,y_train.shape)3.构建神经网络
X = tf.placeholder(dtype=tf.float32,shape = [None,3072])
y = tf.placeholder(dtype=tf.float32,shape = [None,10])
kp = tf.placeholder(dtype=tf.float32)
def gen_v(shape):
return tf.Variable(tf.truncated_normal(shape = shape))
def conv(input_,filter_,b):
conv = tf.nn.relu(tf.nn.conv2d(input_,filter_,strides=[1,1,1,1],padding=‘SAME‘) + b)
return tf.nn.max_pool(conv,[1,3,3,1],[1,2,2,1],‘SAME‘)
def net_work(input_,kp):
# 形状改变,4维
input_ = tf.reshape(input_,shape = [-1,32,32,3])
# 第一层
filter1 = gen_v(shape = [3,3,3,64])
b1 = gen_v(shape = [64])
conv1 = conv(input_,filter1,b1)
# 归一化
conv1 = tf.layers.batch_normalization(conv1,training=True)
# 第二层
filter2 = gen_v([3,3,64,128])
b2 = gen_v(shape = [128])
conv2 = conv(conv1,filter2,b2)
conv2 = tf.layers.batch_normalization(conv2,training=True)
# 第三层
filter3 = gen_v([3,3,128,256])
b3 = gen_v([256])
conv3 = conv(conv2,filter3,b3)
conv3 = tf.layers.batch_normalization(conv3,training=True)
# 第一层全连接层
dense = tf.reshape(conv3,shape = [-1,4*4*256])
fc1_w = gen_v(shape = [4*4*256,1024])
fc1_b = gen_v([1024])
fc1 = tf.matmul(dense,fc1_w) + fc1_b
fc1 = tf.layers.batch_normalization(fc1,training=True)
fc1 = tf.nn.relu(fc1)
# fc1.shape = [-1,1024]
# dropout
dp = tf.nn.dropout(fc1,keep_prob=kp)
# 第二层全连接层
fc2_w = gen_v(shape = [1024,1024])
fc2_b = gen_v(shape = [1024])
fc2 = tf.nn.relu(tf.layers.batch_normalization(tf.matmul(dp,fc2_w) + fc2_b,training=True))
# 输出层
out_w = gen_v(shape = [1024,10])
out_b = gen_v(shape = [10])
out = tf.matmul(fc2,out_w) + out_b
return out4.损失函数准确率
out = net_work(X,kp) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=out)) # 准确率 y_ = tf.nn.softmax(out) # equal 相当于 == accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y,axis = -1),tf.argmax(y_,axis = 1)),tf.float16)) accuracy
5.最优化
1 opt = tf.train.AdamOptimizer().minimize(loss) 2 opt
6.开启训练
epoches = 50000
saver = tf.train.Saver()
index = 0
def next_batch(X,y):
global index
batch_X = X[index*128:(index+1)*128]
batch_y = y[index*128:(index+1)*128]
index+=1
if index == 390:
index = 0
return batch_X,batch_y
test = unpickle(‘./cifar-10-batches-py/test_batch‘)
y_test = test[‘labels‘]
y_test = np.array(y_test)
X_test = test[‘data‘]
y_test = one_hot.transform(y_test.reshape(-1,1)).toarray()
y_test[:10]
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(epoches):
batch_X,batch_y = next_batch(X_train,y_train)
opt_,loss_ = sess.run([opt,loss],feed_dict = {X:batch_X,y:batch_y,kp:0.5})
print(‘----------------------------‘,loss_)
if i % 100 == 0:
score_test = sess.run(accuracy,feed_dict = {X:X_test,y:y_test,kp:1.0})
score_train = sess.run(accuracy,feed_dict = {X:batch_X,y:batch_y,kp:1.0})
print(‘iter count:%d。mini_batch loss:%0.4f。训练数据上的准确率:%0.4f。测试数据上准确率:%0.4f‘%
(i+1,loss_,score_train,score_test))
这个准确率只达到了百分之80
如果想提高准确率,还需要进一步优化,调参
相关推荐
demm 2020-09-18
sunxinyu 2020-09-17
walegahaha 2020-08-15
cherry0 2020-08-15
georgesale 2020-08-14
fengzhimohan 2020-07-23
wenxuegeng 2020-06-14
wenxuegeng 2020-06-08
cherry0 2020-06-06
hnyzyty 2020-06-05
hnyzyty 2020-06-03
wenxuegeng 2020-06-03
walegahaha 2020-06-03
cherry0 2020-06-03
zhaorui0 2020-06-01
kuankeTech 2020-06-01
hnyzyty 2020-05-12
georgesale 2020-05-10
hnyzyty 2020-05-08
hnyzyty 2020-05-05
walegahaha 2020-05-05
wenxuegeng 2020-05-04
玉来愈宏的随笔 2020-05-02
liqing 2020-04-19