数值分析实验之线性方程组的迭代求解(Python实现)
详细实验指导见上一篇,此处只写内容啦
实验内容: 求解如下4元线性方程组的近似解。

• Jacobi迭代过程
import numpy as np
A = np.array([[10,-1,2,0],[-1,11,-1,3],[2,-1,10,-1],[0,3,-1,8]])
B = np.array([6, 25, -11, 15])
x0 = np.array([0.0, 0, 0, 0])
x = np.array([0.0, 0, 0, 0])
times = 0
while True:
for i in range(4):
temp = 0
for j in range(4):
if i != j:
temp += x0[j] * A[i][j]
x[i] = (B[i] - temp) / A[i][i]
calTemp = max(abs(x - x0))
times += 1
if calTemp < 1e-5:
break
else:
x0 = x.copy()
print(times)
print(x)运行结果:

•Gauss-Seidel迭代
import numpy as np
A = np.array([[10,-1,2,0],[-1,11,-1,3],[2,-1,10,-1],[0,3,-1,8]])
B = np.array([6, 25, -11, 15])
x0 = np.array([0.0, 0, 0, 0])
x = np.array([1.0, 2, -1, 1])
times = 0
while True:
for i in range(4):
temp = 0
tempx = x0.copy()
for j in range(4):
if i != j:
temp += x0[j] * A[i][j]
x[i] = (B[i] - temp) / A[i][i]
x0[i] = x[i].copy()
calTemp = max(abs(x - tempx))
times += 1
if calTemp < 1e-5:
break
else:
x0 = x.copy()
print(times)
print(x)运行结果:

• SOR迭代法
import numpy as np
A = np.array([[10,-1,2,0],[-1,11,-1,3],[2,-1,10,-1],[0,3,-1,8]])
B = np.array([6, 25, -11, 15])
x0 = np.array([0.0, 0, 0, 0])
x = np.array([1.0, 2, -1, 1])
w = 1.2
times, MT = 0, 1000
while times < MT:
tempx = x0.copy()
for i in range(4):
temp = 0
for j in range(4):
if i != j:
temp += x0[j] * A[i][j]
x[i] = (B[i] - temp) / A[i][i]
x0[i] = x[i]
x = w * x + (1-w) * tempx
calTemp = max(abs(x - tempx))
times += 1
if calTemp < 1e-5:
break
print(times)
print(x)运行结果:
