欧拉函数详解

欧拉函数

我们用$\phi(n)$表示欧拉函数

定义:$\phi(n)$表示对于整数$n$,小于等于$n$中与$n$互质的数的个数

性质

1.$\phi(n)$为积性函数

2.$\sum_{d|n}\phi(d)=n$

3.$1$到$n$中与$n$互质的数的和为$n*\dfrac{\phi(n)}{2}(n>1)$

计算方法

$\sqrt(n)$计算单值欧拉函数

假设我们需要计算$\phi(n)$

分情况讨论

1.当$n=1$时

很明显,答案为$1$

2.当$n$为质数时

根据素数的定义,答案为$n-1$

(仅有$n$与$n$不互质)

3.当$n$为合数时

我们已经知道了$n$为素数的情况

不妨对$n$进行质因数分解

设$n=a_1^{p_1}*a_2^{p_2}...*a_k^{p_k}$

假设$k=1$

那么$\phi(p^k)=p^k-p^{k-1}$

证明:

考虑容斥,与一个数互素的数的个数就是这个数减去与它不互素的数的个数

因为$p$是素数,所以在$p^k$中与其不互素的数为$1*p$,$2*p$....$p^{k-1}*p$,有$p^{k-1}$个

得证

当$k\neq 1$时

$$\phi(n)$$

$$=\varphi \left( a^{p_{1}}_{1}a^{p_{2}\ldots }_{2}a^{Pk}_{k}\right)$$

$$=\prod ^{k}_{i=1}a^{P_i}-a^{P_{i}-1}_{i}$$

$$=\prod ^{k}_{i=1}a^{Pi}_{i}(1-\dfrac {1}{p_{i}})$$

$$=n*\prod ^{k}_{i=1}(1-\dfrac {1}{p_{i}})$$

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define LL long long 
using namespace std;
int main()
{
    LL N;
    while(cin>>N&&N!=)
    {
        int limit=sqrt(N),ans=N;
        for(int i = ; i <= limit ; ++i)
        {
            if(N%i==) ans=ans/i*(i-);
            while(N%i==) N=N/i;
        }
        if(N>) ans=ans/N*(N-);
        printf("%d\n",ans);
    }
    return ;
}

线性筛

因为欧拉函数是积性函数

因此可以使用线性筛法

性质1

若$p$为素数,则$\varphi \left( p\right) =p-1$

证明:

在$1-p$中,只有$(p,p)\neq1$

性质2

若$i mod p \neq 0$,且$p$为素数

则$\varphi \left( i*p\right) =\varphi \left( i\right) *\varphi \left( p\right)$

$=\varphi \left( i\ast p\right) =\varphi \left( i\right) \ast \left( p-1\right)$

这一步同时利用了性质1和欧拉函数的积性

性质3

若$i mod p = 0$,且$p$为素数,

则$\varphi \left( i\ast p\right) =\varphi \left( i\right) \ast p$

证明:

没怎么看懂,丢一个链接

http://blog.csdn.net/Lytning/article/details/24432651

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define LL long long 
using namespace std;
const int MAXN=1e6+10;
int prime[MAXN],tot=0,vis[MAXN],phi[MAXN],N=10000;
void GetPhi()
{
    for(int i=2;i<=N;i++)
    {
        if(!vis[i])
        {
            prime[++tot]=i;
            phi[i]=i-1;
        }
        for(int j=1;j<=tot&&prime[j]*i<=N;j++)
        {
            vis[ i*prime[j] ] = 1; 
            if(i%prime[j]==0)
            {
                phi[ i*prime[j] ]=phi[i]*prime[j];
                break;
            }
            else phi[ i*prime[j] ]=phi[i]*(prime[j]-1);
        }
    }
}
int main()
{
    GetPhi();
    cin>>N;
    printf("%d\n",phi[N]);
    return 0;
}

例题

放两道水题

http://poj.org/problem?id=2407

题解

http://poj.org/problem?id=2478

题解

相关推荐