实现Canny算法原理 python

创作很累,如果您觉得对您有帮助,请点赞支持,感谢!


一. 总的算法流程:

① 使用高斯滤波器滤波

② 使用 Sobel 滤波器滤波获得在 x 和 y 方向上的输出,在此基础上求出边缘的强度和边缘的角度

实现Canny算法原理 python
edge 为边缘强度,tan 为边缘角度 ↑
 

③ 对边缘角度进行量化处理

实现Canny算法原理 python
对边缘角度进行量化处理算法 ↑
 

④ 根据边缘角度对边缘强度进行非极大值抑制(Non-maximum suppression),使图像边缘变得更细

实现Canny算法原理 python
非极大值抑制算法:0°时取(x,y)、(x+1,y)、(x-1,y) 中的最大值,其它角度类似 ↑
 

⑤ 使用滞后阈值对图像进行二值化处理,优化图像显示效果

实现Canny算法原理 python
算法如上所示 ↑
 

⑥ 输出图像边缘提取效果


二. 使用python手动实现 Canny 算法,完成图像边缘提取

# writer:
# date  :2020.3.20
import cv2
import numpy as np
import matplotlib.pyplot as plt

def Canny(img):

    # Gray scale
    def BGR2GRAY(img):
        b = img[:, :, 0].copy()
        g = img[:, :, 1].copy()
        r = img[:, :, 2].copy()

        # Gray scale
        out = 0.2126 * r + 0.7152 * g + 0.0722 * b
        out = out.astype(np.uint8)

        return out


    # Gaussian filter for grayscale
    def gaussian_filter(img, K_size=3, sigma=1.4):

        if len(img.shape) == 3:
            H, W, C = img.shape
            gray = False
        else:
            img = np.expand_dims(img, axis=-1)
            H, W, C = img.shape
            gray = True

        ## Zero padding
        pad = K_size // 2
        out = np.zeros([H + pad * 2, W + pad * 2, C], dtype=np.float)
        out[pad : pad + H, pad : pad + W] = img.copy().astype(np.float)

        ## prepare Kernel
        K = np.zeros((K_size, K_size), dtype=np.float)
        for x in range(-pad, -pad + K_size):
            for y in range(-pad, -pad + K_size):
                K[y + pad, x + pad] = np.exp( - (x ** 2 + y ** 2) / (2 * sigma * sigma))
        #K /= (sigma * np.sqrt(2 * np.pi))
        K /= (2 * np.pi * sigma * sigma)
        K /= K.sum()

        tmp = out.copy()

        # filtering
        for y in range(H):
            for x in range(W):
                for c in range(C):
                    out[pad + y, pad + x, c] = np.sum(K * tmp[y : y + K_size, x : x + K_size, c])

        out = np.clip(out, 0, 255)
        out = out[pad : pad + H, pad : pad + W]
        out = out.astype(np.uint8)

        if gray:
            out = out[..., 0]

        return out


    # sobel filter
    def sobel_filter(img, K_size=3):
        if len(img.shape) == 3:
            H, W, C = img.shape
        else:
            H, W = img.shape

        # Zero padding
        pad = K_size // 2
        out = np.zeros((H + pad * 2, W + pad * 2), dtype=np.float)
        out[pad : pad + H, pad : pad + W] = img.copy().astype(np.float)
        tmp = out.copy()

        out_v = out.copy()
        out_h = out.copy()

        ## Sobel vertical
        Kv = [[1., 2., 1.],[0., 0., 0.], [-1., -2., -1.]]
        ## Sobel horizontal
        Kh = [[1., 0., -1.],[2., 0., -2.],[1., 0., -1.]]

        # filtering
        for y in range(H):
            for x in range(W):
                out_v[pad + y, pad + x] = np.sum(Kv * (tmp[y : y + K_size, x : x + K_size]))
                out_h[pad + y, pad + x] = np.sum(Kh * (tmp[y : y + K_size, x : x + K_size]))

        out_v = np.clip(out_v, 0, 255)
        out_h = np.clip(out_h, 0, 255)

        out_v = out_v[pad : pad + H, pad : pad + W]
        out_v = out_v.astype(np.uint8)
        out_h = out_h[pad : pad + H, pad : pad + W]
        out_h = out_h.astype(np.uint8)

        return out_v, out_h


    # get edge strength and edge angle
    def get_edge_angle(fx, fy):
        # get edge strength
        edge = np.sqrt(np.power(fx.astype(np.float32), 2) + np.power(fy.astype(np.float32), 2))
        edge = np.clip(edge, 0, 255)

        # make sure the denominator is not 0
        fx = np.maximum(fx, 1e-10)
        #fx[np.abs(fx) <= 1e-5] = 1e-5

        # get edge angle
        angle = np.arctan(fy / fx)

        return edge, angle

    
    # 将角度量化为0°、45°、90°、135°
    def angle_quantization(angle):
        angle = angle / np.pi * 180
        angle[angle < -22.5] = 180 + angle[angle < -22.5]
        _angle = np.zeros_like(angle, dtype=np.uint8)
        _angle[np.where(angle <= 22.5)] = 0
        _angle[np.where((angle > 22.5) & (angle <= 67.5))] = 45
        _angle[np.where((angle > 67.5) & (angle <= 112.5))] = 90
        _angle[np.where((angle > 112.5) & (angle <= 157.5))] = 135

        return _angle


    def non_maximum_suppression(angle, edge):
        H, W = angle.shape
        _edge = edge.copy()
        
        for y in range(H):
            for x in range(W):
                    if angle[y, x] == 0:
                            dx1, dy1, dx2, dy2 = -1, 0, 1, 0
                    elif angle[y, x] == 45:
                            dx1, dy1, dx2, dy2 = -1, 1, 1, -1
                    elif angle[y, x] == 90:
                            dx1, dy1, dx2, dy2 = 0, -1, 0, 1
                    elif angle[y, x] == 135:
                            dx1, dy1, dx2, dy2 = -1, -1, 1, 1
                    # 边界处理
                    if x == 0:
                            dx1 = max(dx1, 0)
                            dx2 = max(dx2, 0)
                    if x == W-1:
                            dx1 = min(dx1, 0)
                            dx2 = min(dx2, 0)
                    if y == 0:
                            dy1 = max(dy1, 0)
                            dy2 = max(dy2, 0)
                    if y == H-1:
                            dy1 = min(dy1, 0)
                            dy2 = min(dy2, 0)
                    # 如果不是最大值,则将这个位置像素值置为0
                    if max(max(edge[y, x], edge[y + dy1, x + dx1]), edge[y + dy2, x + dx2]) != edge[y, x]:
                            _edge[y, x] = 0

        return _edge


    # 滞后阈值处理二值化图像
    # > HT 的设为255,< LT 的设置0,介于它们两个中间的值,使用8邻域判断法
    def hysterisis(edge, HT=100, LT=30):
        H, W = edge.shape

        # Histeresis threshold
        edge[edge >= HT] = 255
        edge[edge <= LT] = 0

        _edge = np.zeros((H + 2, W + 2), dtype=np.float32)
        _edge[1 : H + 1, 1 : W + 1] = edge

        ## 8 - Nearest neighbor
        nn = np.array(((1., 1., 1.), (1., 0., 1.), (1., 1., 1.)), dtype=np.float32)

        for y in range(1, H+2):
                for x in range(1, W+2):
                        if _edge[y, x] < LT or _edge[y, x] > HT:
                                continue
                        if np.max(_edge[y-1:y+2, x-1:x+2] * nn) >= HT:
                                _edge[y, x] = 255
                        else:
                                _edge[y, x] = 0

        edge = _edge[1:H+1, 1:W+1]
                                
        return edge

    # grayscale
    gray = BGR2GRAY(img)

    # gaussian filtering
    gaussian = gaussian_filter(gray, K_size=5, sigma=1.4)

    # sobel filtering
    fy, fx = sobel_filter(gaussian, K_size=3)

    # get edge strength, angle
    edge, angle = get_edge_angle(fx, fy)

    # angle quantization
    angle = angle_quantization(angle)

    # non maximum suppression
    edge = non_maximum_suppression(angle, edge)

    # hysterisis threshold
    out = hysterisis(edge, 80, 20)

    return out


if __name__ == ‘__main__‘:
    # Read image
    img = cv2.imread("../paojie.jpg").astype(np.float32)

    # Canny
    edge = Canny(img)

    out = edge.astype(np.uint8)

    # Save result
    cv2.imwrite("out.jpg", out)
    cv2.imshow("result", out)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

三. 实验结果:

实现Canny算法原理 python
原图 ↑
 
实现Canny算法原理 python
Canny 算法 提取图像边缘结果 ↑
 

可以看到,我的代码如愿以偿地提取了图像边缘,而且效果很好!


四. 参考内容:

   https://www.jianshu.com/p/ff4c1a6a68d8


五. 版权声明:

未经作者允许,请勿随意转载抄袭,抄袭情节严重者,作者将考虑追究其法律责任,创作不易,感谢您的理解和配合!