Hadoop基础(二十二):Shuffle机制(三)
7 Combiner合并

(6)自定义Combiner实现步骤
(a)自定义一个Combiner继承Reducer,重写Reduce方法
public class WordcountCombiner extends Reducer<Text, IntWritable, Text,IntWritable>{
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
        // 1 汇总操作
        int count = 0;
        for(IntWritable v :values){
            count += v.get();
        }
        // 2 写出
        context.write(key, new IntWritable(count));
    }
}(b)在Job驱动类中设置:
job.setCombinerClass(WordcountCombiner.class);
8 Combiner合并案例实操
1.需求
统计过程中对每一个MapTask的输出进行局部汇总,以减小网络传输量即采用Combiner功能。
(1)数据输入

(2)期望输出数据
期望:Combine输入数据多,输出时经过合并,输出数据降低。
2.需求分析

图4-15 Combiner的合并案例
3.案例实操-方案一
1)增加一个WordcountCombiner类继承Reducer
package com.atguigu.mr.combiner;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordcountCombiner extends Reducer<Text, IntWritable, Text, IntWritable>{
IntWritable v = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        // 1 汇总
        int sum = 0;
        for(IntWritable value :values){
            sum += value.get();
        }
        v.set(sum);
        // 2 写出
        context.write(key, v);
    }
}2)在WordcountDriver驱动类中指定Combiner
// 指定需要使用combiner,以及用哪个类作为combiner的逻辑 job.setCombinerClass(WordcountCombiner.class);
4.案例实操-方案二
1)将WordcountReducer作为Combiner在WordcountDriver驱动类中指定
// 指定需要使用Combiner,以及用哪个类作为Combiner的逻辑 job.setCombinerClass(WordcountReducer.class);
运行程序,如图4-16,4-17所示

图4-16 未使用前

图4-17 使用后
9 GroupingComparator分组(辅助排序)
对Reduce阶段的数据根据某一个或几个字段进行分组。
分组排序步骤:
(1)自定义类继承WritableComparator
(2)重写compare()方法
@Override
public int compare(WritableComparable a, WritableComparable b) {
        // 比较的业务逻辑
        return result;
}(3)创建一个构造将比较对象的类传给父类
protected OrderGroupingComparator() {
        super(OrderBean.class, true);
}10 GroupingComparator分组案例实操
1.需求
有如下订单数据
表4-2 订单数据
订单id  | 商品id  | 成交金额  | 
0000001  | Pdt_01  | 222.8  | 
Pdt_02  | 33.8  | |
0000002  | Pdt_03  | 522.8  | 
Pdt_04  | 122.4  | |
Pdt_05  | 722.4  | |
0000003  | Pdt_06  | 232.8  | 
Pdt_02  | 33.8  | 
现在需要求出每一个订单中最贵的商品。
(1)输入数据

(2)期望输出数据
1 222.8
2 722.4
3 232.8
2.需求分析
(1)利用“订单id和成交金额”作为key,可以将Map阶段读取到的所有订单数据按照id升序排序,如果id相同再按照金额降序排序,发送到Reduce。
(2)在Reduce端利用groupingComparator将订单id相同的kv聚合成组,然后取第一个即是该订单中最贵商品,如图4-18所示。

图4-18 过程分析
3.代码实现
(1)定义订单信息OrderBean类
package com.atguigu.mapreduce.order;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class OrderBean implements WritableComparable<OrderBean> {
    private int order_id; // 订单id号
    private double price; // 价格
    public OrderBean() {
        super();
    }
    public OrderBean(int order_id, double price) {
        super();
        this.order_id = order_id;
        this.price = price;
    }
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(order_id);
        out.writeDouble(price);
    }
    @Override
    public void readFields(DataInput in) throws IOException {
        order_id = in.readInt();
        price = in.readDouble();
    }
    @Override
    public String toString() {
        return order_id + "\t" + price;
    }
    public int getOrder_id() {
        return order_id;
    }
    public void setOrder_id(int order_id) {
        this.order_id = order_id;
    }
    public double getPrice() {
        return price;
    }
    public void setPrice(double price) {
        this.price = price;
    }
    // 二次排序
    @Override
    public int compareTo(OrderBean o) {
        int result;
        if (order_id > o.getOrder_id()) {
            result = 1;
        } else if (order_id < o.getOrder_id()) {
            result = -1;
        } else {
            // 价格倒序排序
            result = price > o.getPrice() ? -1 : 1;
        }
        return result;
    }
}(2)编写OrderSortMapper类
package com.atguigu.mapreduce.order;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
    OrderBean k = new OrderBean();
    
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        
        // 1 获取一行
        String line = value.toString();
        
        // 2 截取
        String[] fields = line.split("\t");
        
        // 3 封装对象
        k.setOrder_id(Integer.parseInt(fields[0]));
        k.setPrice(Double.parseDouble(fields[2]));
        
        // 4 写出
        context.write(k, NullWritable.get());
    }
}(3)编写OrderSortGroupingComparator类
package com.atguigu.mapreduce.order;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
public class OrderGroupingComparator extends WritableComparator {
    protected OrderGroupingComparator() {
        super(OrderBean.class, true);
    }
    @Override
    public int compare(WritableComparable a, WritableComparable b) {
        OrderBean aBean = (OrderBean) a;
        OrderBean bBean = (OrderBean) b;
        int result;
        if (aBean.getOrder_id() > bBean.getOrder_id()) {
            result = 1;
        } else if (aBean.getOrder_id() < bBean.getOrder_id()) {
            result = -1;
        } else {
            result = 0;
        }
        return result;
    }
}(4)编写OrderSortReducer类
package com.atguigu.mapreduce.order;
import java.io.IOException;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
    @Override
    protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context)        throws IOException, InterruptedException {
        
        context.write(key, NullWritable.get());
    }
}(5)编写OrderSortDriver类
package com.atguigu.mapreduce.order;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class OrderDriver {
    public static void main(String[] args) throws Exception, IOException {
// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args  = new String[]{"e:/input/inputorder" , "e:/output1"};
        // 1 获取配置信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2 设置jar包加载路径
        job.setJarByClass(OrderDriver.class);
        // 3 加载map/reduce类
        job.setMapperClass(OrderMapper.class);
        job.setReducerClass(OrderReducer.class);
        // 4 设置map输出数据key和value类型
        job.setMapOutputKeyClass(OrderBean.class);
        job.setMapOutputValueClass(NullWritable.class);
        // 5 设置最终输出数据的key和value类型
        job.setOutputKeyClass(OrderBean.class);
        job.setOutputValueClass(NullWritable.class);
        // 6 设置输入数据和输出数据路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        // 8 设置reduce端的分组
    job.setGroupingComparatorClass(OrderGroupingComparator.class);
        // 7 提交
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}