独家 | 教你在R中使用Keras和TensorFlow构建深度学习模型

独家 | 教你在R中使用Keras和TensorFlow构建深度学习模型

引言:

在R和Python之间如何进行选择一直是一个热议的话题。机器学习世界也被不同语言偏好所划分。但是随着深度学习的盛行,天平逐渐向Python倾斜,因为截至目前为止Python具有大量R所没有的深度学习的资源库和框架。

我个人从R转到Python是因为我想更加深入机器学习的领域,而仅仅使用R的话,这(在之前)是几乎不可能实现的事情。不过也仅此而已!

随着Keras在R中的实现,语言选择的斗争又重新回到舞台中央。Python几乎已经慢慢变成深度学习建模的默认语言,但是随着在R中以TensorFlow(CPU和GPU均兼容)为后端的Keras框架的发行, 即便是在深度学习领域,R与Python抢占舞台的战争也再一次打响。

下面我们将会看到怎样在R中安装以TensorFlow为基础的Keras框架,然后在RStudio中构建我们基于经典MNIST数据集的第一个神经网络模型。

内容列表:

  • 以TensorFlow为后端的Keras框架安装
  • 在R中可以使用Keras来构建模型的不同类型
  • 在R中使用MLP将MNIST手写数字进行归类
  • 将MNIST结果与Python中同等代码结果进行比较
  • 结语

一、以TensorFlow为后端的Keras框架安装

在RStudio中安装Keras的步骤非常简单。只要跟着以下步骤,你就可以在R中构建你的第一个神经网络模型。

install.packages("devtools") 


 



devtools::install_github("rstudio/keras")  

以上步骤会从Github资源库下载Keras。现在是时候把keras加载进R,然后安装TensorFlow。

library(keras) 

在默认情况下,RStudio会加载CPU版本的TensorFlow。如果没有成功加载CPU版本的TensorFlow, 使用以下指令来下载。

install_tensorflow() 

如要为单独用户或桌面系统安装GPU支持的TensorFlow,使用以下指令。

install_tensorflow(gpu=TRUE) 

为多重用户安装,请参考这个指南:https://tensorflow.rstudio.com/installation_gpu.html。

现在在我们的RStudio里,keras和TensorFlow都安装完毕了。让我们开始构建第一个在R中的神经网络来处理MNIST数据集吧。

二、在R中可以使用keras来构建模型的不同类型

以下是可以在R中使用Keras构建的模型列表

  1. 多层感知器(Multi-Layer Perceptrons)
  2. 卷积神经网络(Convoluted Neural Networks)
  3. 递归神经网络(Recurrent Neural Networks)
  4. Skip-Gram模型
  5. 使用预训练的模型(比如VGG16、RESNET等)
  6. 微调预训练的模型

让我们从构建仅有一个隐藏层的简单MLP模型开始,来试着对手写数字进行归类。

三、在R中使用MLP将MNIST手写数字进行归类

#loading keras library 


 


library(keras) 


 


#loading the keras inbuilt mnist dataset 


 


data<-dataset_mnist() 


 


#separating train and test file 


 


train_x<-data$train$x 


 


train_y<-data$train$y 


 


test_x<-data$test$x 


 


test_y<-data$test$y 


 


rm(data) 


 


# converting a 2D array into a 1D array for feeding into the MLP and normalising the matrix 


 


train_x <- array(train_x, dim = c(dim(train_x)[1], prod(dim(train_x)[-1]))) / 255 


 


test_x <- array(test_x, dim = c(dim(test_x)[1], prod(dim(test_x)[-1]))) / 255 


 


#converting the target variable to once hot encoded vectors using keras inbuilt function 


 


train_y<-to_categorical(train_y,10) 


 


test_y<-to_categorical(test_y,10) 


 


#defining a keras sequential model 


 


model <- keras_model_sequential() 


 


#defining the model with 1 input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer[10 neurons] 


 


#i.e number of digits from 0 to 9 


 


model %>% 


 


layer_dense(units = 784, input_shape = 784) %>% 


 


layer_dropout(rate=0.4)%>% 


 


layer_activation(activation = 'relu') %>% 


 


layer_dense(units = 10) %>% 


 


layer_activation(activation = 'softmax') 


 


#compiling the defined model with metric = accuracy and optimiser as adam. 


 


model %>% compile( 


 


loss = 'categorical_crossentropy', 


 


optimizer = 'adam', 


 


metrics = c('accuracy') 


 


) 


 


#fitting the model on the training dataset 


 


model %>% fit(train_x, train_y, epochs = 100, batch_size = 128) 


 


#Evaluating model on the cross validation dataset 


 



loss_and_metrics <- model %>% evaluate(test_x, test_y, batch_size = 128)  

以上的代码获得了99.14%的训练精度和96.89%的验证精度。在我的i5处理器上跑这段代码完整训练一次用时13.5秒,而在TITANx GPU上,验证精度可以达到98.44%,训练一次平均用时2秒。

四、使用keras来构建MLP模型——R Vs. Python

为了更好地比较,我同样使用Python来实现解决以上的MINIST归类问题。结果不应当有任何差别,因为R会创建一个进程(conda instance)并在其中运行keras。但你仍然可以尝试以下同等的Python代码。

#importing the required libraries for the MLP model 


 


import keras 


 


from keras.models import Sequential 


 


import numpy as np 


 


#loading the MNIST dataset from keras 


 


from keras.datasets import mnist 


 


(x_train, y_train), (x_test, y_test) = mnist.load_data() 


 


#reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions 


 


x_train=np.reshape(x_train,(x_train.shape[0],-1))/255 


 


x_test=np.reshape(x_test,(x_test.shape[0],-1))/255 


 


import pandas as pd 


 


y_train=pd.get_dummies(y_train) 


 


y_test=pd.get_dummies(y_test) 


 


#performing one-hot encoding on target variables for train and test 


 


y_train=np.array(y_train) 


 


y_test=np.array(y_test) 


 


#defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons] 


 


model=Sequential() 


 


from keras.layers import Dense 


 


model.add(Dense(784, input_dim=784, activation='relu')) 


 


keras.layers.core.Dropout(rate=0.4) 


 


model.add(Dense(10,input_dim=784,activation='softmax')) 


 


# compiling model using adam optimiser and accuracy as metric 


 


model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy']) 


 


# fitting model and performing validation 


 



model.fit(x_train,y_train,epochs=50,batch_size=128,validation_data=(x_test,y_test))  

以上模型在同样的GPU上达到了98.42%的验证精度。所以,就像我们在一开始猜测的那样,结果是相同的。

五、结语

相关推荐