tensorflow如何继续训练之前保存的模型实例
一:需重定义神经网络继续训练的方法
1.训练代码
import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")
y=weight*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data)) #loss
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(train)
saver.save(sess,"./save_mode",global_step=step) #保存
print("当前进行:",step)第一次训练截图:

2.恢复上一次的训练
import numpy as np
import tensorflow as tf
sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))
print(sess.run("w:0"),sess.run("b:0"))
graph=tf.get_default_graph()
weight=graph.get_tensor_by_name("w:0")
biases=graph.get_tensor_by_name("b:0")
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
y=weight*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(train)
saver.save(sess,r"./save_new_mode",global_step=step)
print("当前进行:",step," ",sess.run(weight),sess.run(biases))使用上次保存下的数据进行继续训练和保存:

#最后要提一下的是:
checkpoint文件
meta保存了TensorFlow计算图的结构信息
datat保存每个变量的取值
index保存了 表
加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的
这个方法需要重新定义神经网络
二:不需要重新定义神经网络的方法:
在上面训练的代码中加入:tf.add_to_collection("name",参数)
import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")
y=weight*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
tf.add_to_collection("new_way",train)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(train)
saver.save(sess,"./save_mode",global_step=step)
print("当前进行:",step)在下面的载入代码中加入:tf.get_collection("name"),就可以直接使用了
import numpy as np
import tensorflow as tf
sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))
print(sess.run("w:0"),sess.run("b:0"))
graph=tf.get_default_graph()
weight=graph.get_tensor_by_name("w:0")
biases=graph.get_tensor_by_name("b:0")
y=tf.get_collection("new_way")[0]
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(y)
saver.save(sess,r"./save_new_mode",global_step=step)
print("当前进行:",step," ",sess.run(weight),sess.run(biases))总的来说,下面这种方法好像是要便利一些
相关推荐
Micusd 2020-11-19
lybbb 2020-10-15
lybbb 2020-09-29
ghjk0 2020-09-24
yamaxifeng 2020-09-09
GDGYZL 2020-08-28
lybbb 2020-08-28
Icevivian 2020-08-25
comwayLi 2020-08-16
carbon0 2020-08-16
源式羽语 2020-08-09
sherry颖 2020-08-01
songbinxu 2020-07-19
sherry颖 2020-07-18
Niteowl 2020-07-15
Kindle君 2020-07-15
源式羽语 2020-07-04
源式羽语 2020-06-28