hibernate的锁

锁( locking )

业务逻辑的实现过程中,往往需要保证数据访问的排他性。如在金融系统的日终结算

处理中,我们希望针对某个cut-off时间点的数据进行处理,而不希望在结算进行过程中

(可能是几秒种,也可能是几个小时),数据再发生变化。此时,我们就需要通过一些机

制来保证这些数据在某个操作过程中不会被外界修改,这样的机制,在这里,也就是所谓

的“锁”,即给我们选定的目标数据上锁,使其无法被其他程序修改。

Hibernate支持两种锁机制:即通常所说的“悲观锁(PessimisticLocking)”

和“乐观锁(OptimisticLocking)”。

悲观锁(PessimisticLocking)

悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自

外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定

状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能

真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系

统不会修改数据)。

一个典型的倚赖数据库的悲观锁调用:

select*fromaccountwherename=”Erica”forupdate

这条sql语句锁定了account表中所有符合检索条件(name=”Erica”)的记录。

本次事务提交之前(事务提交时会释放事务过程中的锁),外界无法修改这些记录。

Hibernate的悲观锁,也是基于数据库的锁机制实现。

下面的代码实现了对查询记录的加锁:

 

String hqlStr =

"fromTUserasuserwhereuser.name='Erica'";

Queryquery=session.createQuery(hqlStr);

query.setLockMode("user",LockMode.UPGRADE);//加锁

ListuserList=query.list();//执行查询,获取数据

query.setLockMode对查询语句中,特定别名所对应的记录进行加锁(我们为

TUser类指定了一个别名“user”),这里也就是对返回的所有user记录进行加锁。

观察运行期Hibernate生成的SQL语句:

selecttuser0_.idasid,tuser0_.nameasname,tuser0_.group_id

asgroup_id,tuser0_.user_typeasuser_type,tuser0_.sexassex

fromt_usertuser0_where(tuser0_.name='Erica')forupdate

这里Hibernate通过使用数据库的forupdate子句实现了悲观锁机制。

Hibernate的加锁模式有:

ØLockMode.NONE:无锁机制。

ØLockMode.WRITE:Hibernate在Insert和Update记录的时候会自动

获取。

ØLockMode.READ:Hibernate在读取记录的时候会自动获取。

以上这三种锁机制一般由Hibernate内部使用,如Hibernate为了保证Update

过程中对象不会被外界修改,会在save方法实现中自动为目标对象加上WRITE锁。

ØLockMode.UPGRADE:利用数据库的forupdate子句加锁。

ØLockMode.UPGRADE_NOWAIT:Oracle的特定实现,利用Oracle的for

updatenowait子句实现加锁。

上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现:

Criteria.setLockMode

Query.setLockMode

Session.lock

注意,只有在查询开始之前(也就是Hiberate生成SQL之前)设定加锁,才会

真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含forupdate

子句的SelectSQL加载进来,所谓数据库加锁也就无从谈起。

乐观锁(OptimisticLocking)

相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依

靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库

性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。

如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进

行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过

程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作

员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几

百上千个并发,这样的情况将导致怎样的后果。

乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本

(Version)记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于

数据库表的版本解决方案中,一般是通过为数据库表增加一个“version”字段来

实现。

读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提

交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据

版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个

version字段,当前值为1;而当前帐户余额字段(balance)为$100。

1操作员A此时将其读出(version=1),并从其帐户余额中扣除$50

($100-$50)。

2在操作员A操作的过程中,操作员B也读入此用户信息(version=1),并

从其帐户余额中扣除$20($100-$20)。

3操作员A完成了修改工作,将数据版本号加一(version=2),连同帐户扣

除后余额(balance=$50),提交至数据库更新,此时由于提交数据版本大

于数据库记录当前版本,数据被更新,数据库记录version更新为2。

4操作员B完成了操作,也将版本号加一(version=2)试图向数据库提交数

据(balance=$80),但此时比对数据库记录版本时发现,操作员B提交的

数据版本号为2,数据库记录当前版本也为2,不满足“提交版本必须大于记

录当前版本才能执行更新“的乐观锁策略,因此,操作员B的提交被驳回。

这样,就避免了操作员B用基于version=1的旧数据修改的结果覆盖操作

员A的操作结果的可能。

从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员A

和操作员B操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系

统整体性能表现。

需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局

限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户

余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在

系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如

将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途

径,而不是将数据库表直接对外公开)。

Hibernate在其数据访问引擎中内置了乐观锁实现。如果不用考虑外部系统对数

据库的更新操作,利用Hibernate提供的透明化乐观锁实现,将大大提升我们的

生产力。

Hibernate中可以通过class描述符的optimistic-lock属性结合version

描述符指定。

现在,我们为之前示例中的 TUser 加上乐观锁机制。

1 . 首先为 TUser 的 class 描述符添加 optimistic-lock 属性:

<hibernate-mapping>

<class

name="org.hibernate.sample.TUser"

table="t_user"

dynamic-update="true"

dynamic-insert="true"

optimistic-lock="version"

>

……

</class>

</hibernate-mapping>

optimistic-lock属性有如下可选取值:

Ønone

无乐观锁

Øversion

通过版本机制实现乐观锁

Ødirty

通过检查发生变动过的属性实现乐观锁

Øall

通过检查所有属性实现乐观锁

其中通过version实现的乐观锁机制是Hibernate官方推荐的乐观锁实现,同时也

是Hibernate中,目前唯一在数据对象脱离Session发生修改的情况下依然有效的锁机

制。因此,一般情况下,我们都选择version方式作为Hibernate乐观锁实现机制。

2.添加一个Version属性描述符

<hibernate-mapping>

<class

name="org.hibernate.sample.TUser"

table="t_user"

dynamic-update="true"

dynamic-insert="true"

optimistic-lock="version"

>

<id

name="id"

column="id"

type="java.lang.Integer"

>

<generator class="native">

</generator>

</id>

<version

column="version"

name="version"

type="java.lang.Integer"

/>

……

</class>

</hibernate-mapping>

注意version节点必须出现在ID节点之后。

这里我们声明了一个version属性,用于存放用户的版本信息,保存在TUser表的

version字段中。

此时如果我们尝试编写一段代码,更新TUser表中记录数据,如:

Criteriacriteria=session.createCriteria(TUser.class);

criteria.add(Expression.eq("name","Erica"));

ListuserList=criteria.list();

TUseruser=(TUser)userList.get(0);

Transactiontx=session.beginTransaction();

user.setUserType(1);//更新UserType字段

tx.commit();

每次对TUser进行更新的时候,我们可以发现,数据库中的version都在递增。

而如果我们尝试在tx.commit之前,启动另外一个Session,对名为Erica的用

户进行操作,以模拟并发更新时的情形:

Sessionsession=getSession();

Criteriacriteria=session.createCriteria(TUser.class);

criteria.add(Expression.eq("name","Erica"));

Sessionsession2=getSession();

Criteriacriteria2=session2.createCriteria(TUser.class);

criteria2.add(Expression.eq("name","Erica"));

ListuserList=criteria.list();

ListuserList2=criteria2.list();TUseruser=(TUser)userList.get(0);

TUseruser2=(TUser)userList2.get(0);

Transactiontx=session.beginTransaction();

Transactiontx2=session2.beginTransaction();

user2.setUserType(99);

tx2.commit();

user.setUserType(1);

tx.commit();

执行以上代码,代码将在tx.commit()处抛出StaleObjectStateException异

常,并指出版本检查失败,当前事务正在试图提交一个过期数据。通过捕捉这个异常,我

们就可以在乐观锁校验失败时进行相应处理

相关推荐