归并排序
归并排序是一个典型的基于分治的递归算法。它不断地将原数组分成大小相等的两个子数组(可能相差1),最终当划分的子数组大小为1时,将划分的有序子数组组合并成一个更大的有序数组。

算法分析:
分,也就是把原数组划分成两个子数组的过程。
治,它将两个有序数组合并成一个更大的有序数组。
它将数组平均分成两部分:center=(left+right)/2,当数组分的足够小时(数组中只有一个元素时),只有一个元素的数组自然而然地就可以视为是有序的,此时就可以进行合并操作了。因此,上面讲的合并两个有序的子数组,是从只有一个元素的两个字数组开始合并的。
合并后的元素个数:从1->2->4->8->...
举例:
比如初始数组为:[24,13,25,1,2,27,38,15]
1)分成了两个大小相等的子数组:[24,13,25,1],[2,27,38,15]
2)再划分成四个大小相等的子数组:[24,13],[25,1],[2,27],[38,15]
3)此时,left<right还是成立的,再分为:[24],[13],[25],[1],[2],[27],[38],[15]
此时,有8个小数组,每个数组都可以视为有序的数组!每个数组中的left=right,从递归中返回,故开始执行合并(第21行):
merge([24],[13]),得到[13,24]
merge([25],[1]),得到[1,25]
......
最终得到有序数组。
复杂度分析:
归并排序中,用到了一个临时数组,故空间复杂度为O(n);由归并排序的递归公式:T(n)=2T(n/2)+O(n),可知时间复杂度为O(nlogn)。
归并排序中的比较次数是所有排序中最少的。原因是,它一开始是不断地划分,比较只发生在合并各个有序的子数组时。
稳定性:
归并排序是稳定排序,它也是一种十分高效的排序,能利用完全二叉树特性的排序一般性能都不会太差。Java中Arrays.sort()采用了一种名为TimSort的排序算法,就是归并排序的优化版本。从上图中可以看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|O(nlogn)|,总的平均时间复杂度为O(nlogn)。而且,归并排序的最好/最坏平均时间复杂度均为O(nlogn)。
算法实现:
第一种方法:
public class MergeSort {
/*
* 将一个数组中的两个相邻有序区间合并成一个
* 参数说明:
* a -- 包含两个有序区间的数组
* start -- 第1个有序区间的起始地址。
* mid -- 第1个有序区间的结束地址。也是第2个有序区间的起始地址。
* end -- 第2个有序区间的结束地址。
*/
public static void merge(int[] a, int start, int mid, int end) {
int[] tmp = new int[end-start+1]; // tmp是汇总2个有序区的临时区域
int i = start; // 第1个有序区的索引
int j = mid + 1; // 第2个有序区的索引
int k = 0; // 临时区域的索引
while(i <= mid && j <= end) {
if (a[i] <= a[j])
tmp[k++] = a[i++];
else
tmp[k++] = a[j++];
}
while(i <= mid)
tmp[k++] = a[i++];
while(j <= end)
tmp[k++] = a[j++];
// 将排序后的元素,全部都整合到数组a中。
for (i = 0; i < k; i++)
a[start + i] = tmp[i];
tmp=null;
}
/*
* 归并排序(从上往下)
*
* 参数说明:
* a -- 待排序的数组
* start -- 数组的起始地址
* endi -- 数组的结束地址
*/
public static void mergeSortUp2Down(int[] a, int start, int end) {
if(a==null || start >= end)
return ;
int mid = (end + start)/2;
mergeSortUp2Down(a, start, mid); // 递归排序a[start...mid]
mergeSortUp2Down(a, mid+1, end); // 递归排序a[mid+1...end]
// a[start...mid] 和 a[mid...end]是两个有序空间,
// 将它们排序成一个有序空间a[start...end]
merge(a, start, mid, end);
}
/*
* 对数组a做若干次合并:数组a的总长度为len,将它分为若干个长度为gap的子数组;
* 将"每2个相邻的子数组" 进行合并排序。
*
* 参数说明:
* a -- 待排序的数组
* len -- 数组的长度
* gap -- 子数组的长度
*/
public static void mergeGroups(int[] a, int len, int gap) {
int i;
int twolen = 2 * gap; // 两个相邻的子数组的长度
// 将"每2个相邻的子数组" 进行合并排序。
for(i = 0; i+2*gap-1 < len; i+=(2*gap))
merge(a, i, i+gap-1, i+2*gap-1);
// 若 i+gap-1 < len-1,则剩余一个子数组没有配对。
// 将该子数组合并到已排序的数组中。
if ( i+gap-1 < len-1)
merge(a, i, i + gap - 1, len - 1);
}
/*
* 归并排序(从下往上)
*
* 参数说明:
* a -- 待排序的数组
*/
public static void mergeSortDown2Up(int[] a) {
if (a==null)
return ;
for(int n = 1; n < a.length; n*=2)
mergeGroups(a, a.length, n);
}
public static void main(String[] args) {
int i;
int a[] = {80,30,60,40,20,10,50,70};
System.out.printf("before sort:");
for (i=0; i<a.length; i++)
System.out.printf("%d ", a[i]);
System.out.printf("\n");
mergeSortUp2Down(a, 0, a.length-1); // 归并排序(从上往下)
//mergeSortDown2Up(a); // 归并排序(从下往上)
System.out.printf("after sort:");
for (i=0; i<a.length; i++)
System.out.printf("%d ", a[i]);
System.out.printf("\n");
}
}第二种方法:
public class MergeSortTest {
public static void main(String[] args) {
int[] data = new int[] { 5, 3, 6, 2, 1, 9, 4, 8, 7 };
print(data);
mergeSort(data);
System.out.println("排序后的数组:");
print(data);
}
public static void mergeSort(int[] data) {
sort(data, 0, data.length - 1);
}
public static void sort(int[] data, int left, int right) {
if (left >= right)
return;
// 找出中间索引
int center = (left + right) / 2;
// 对左边数组进行递归
sort(data, left, center);
// 对右边数组进行递归
sort(data, center + 1, right);
// 合并
22 merge(data, left, center, right);
print(data);
}
/**
* 将两个数组进行归并,归并前面 2 个数组已有序,归并后依然有序
* @param data
* 数组对象
* @param left
* 左数组的第一个元素的索引
* @param center
* 左数组的最后一个元素的索引,center+1 是右数组第一个元素的索引
* @param right
* 右数组最后一个元素的索引
*/
public static void merge(int[] data, int left, int center, int right) {
// 临时数组
38 int[] tmpArr = new int[data.length];
// 右数组第一个元素索引
int mid = center + 1;
// third 记录临时数组的索引
int third = left;
// 缓存左数组第一个元素的索引
int tmp = left;
while (left <= center && mid <= right) {
// 从两个数组中取出最小的放入临时数组
if (data[left] <= data[mid]) {
tmpArr[third++] = data[left++];
49 } else {
tmpArr[third++] = data[mid++];
}
}
// 剩余部分依次放入临时数组(实际上两个 while 只会执行其中一个)
while (mid <= right) {
tmpArr[third++] = data[mid++];
}
while (left <= center) {
58 tmpArr[third++] = data[left++];
}
// 将临时数组中的内容拷贝回原数组中
// (原 left-right 范围的内容被复制回原数组)
62 while (tmp <= right) {
data[tmp] = tmpArr[tmp++];
}
}
public static void print(int[] data) {
for (int i = 0; i < data.length; i++) {
System.out.print(data[i] + "\t");
}
System.out.println();
}
}